Diseases and Their Cures Wikia
Advertisement

 What is Hyperthyroidism?[]

https://en.wikipedia.org/wiki/Hyperthyroidism

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Triiodothyronine.svg/664px-Triiodothyronine.svg.png

How does Hyperthyroidism Affect the Endocrine System?[]

Too much thyroid hormone in addition to gonadal function.And often affect the pituitary-adrnal function,stress response due to early blood adrenocorticotropic hormone(ATC H),cortisol and 17-by 24-hoururine corticosteroids increased.Then received more thyroid hormone suppression.17-by corticosteroids ,17 steroid ketones light decreased cortisol half_life is shortened.

Signs and Symptoms[]

Hyperthyroidism may be asymptomatic or present with significant symptoms. Some of the symptoms of hyperthyroidism include nervousness, irritability, increased perspiration, heart racing, hand tremors, anxiety, difficulty sleeping, thinning of the skin, fine brittle hair, and muscular weakness—especially in the upper arms and thighs. More frequent bowel movements may occur, and diarrhea is common. Weight loss, sometimes significant, may occur despite a good appetite (though 10% of people with a hyperactive thyroid experience weight gain), vomiting may occur, and, for women, menstrual flow may lighten and menstrual periods may occur less often, or with longer cycles than usual.

https://en.wikipedia.org/wiki/File:Blausen_0534_Goiter.png

Thyroid hormone is critical to normal function of cells. In excess, it both overstimulates metabolism and exacerbates the effect of thesympathetic nervous system, causing "speeding up" of various body systems and symptoms resembling an overdose of epinephrine(adrenaline). These include fast heart beat and symptoms of palpitations, nervous system tremor such as of the hands and anxietysymptoms, digestive system hypermotility, unintended weight loss, and (in "lipid panel" blood tests) a lower and sometimes unusually low serum cholesterol.

Major clinical signs include weight loss (often accompanied by an increased appetite), anxiety, intolerance to heat, hair loss (especially of the outer third of the eyebrows), muscle aches, weakness, fatigue, hyperactivity, irritability, high blood sugar, excessive urination, excessive thirst, delirium, tremor, pretibial myxedema (in Graves' disease), emotional lability, and sweating. Panic attacks, inability to concentrate, and memory problems may also occur. Psychosis and paranoia, common during thyroid storm, are rare with milder hyperthyroidism. Many persons will experience complete remission of symptoms 1 to 2 months after a euthyroid state is obtained, with a marked reduction in anxiety, sense of exhaustion, irritability, and depression. Some individuals may have an increased rate of anxiety or persistence of affective and cognitive symptoms for several months to up to 10 years after a euthyroid state is established.[7] In addition, those with hyperthyroidism may present with a variety of physical symptoms such as palpitations and abnormal heart rhythms (the notable ones being atrial fibrillation), shortness of breath (dyspnea), loss of libido, amenorrhea, nausea, vomiting, diarrhea, gynecomastia and feminization. Long term untreated hyperthyroidism can lead to osteoporosis. These classical symptoms may not be present often in the elderly.

Neurological manifestations can include tremors, chorea, myopathy, and in some susceptible individuals (in particular of Asian descent) periodic paralysis. An association between thyroid disease and myasthenia gravis has been recognized. The thyroid disease, in this condition, is autoimmune in nature and approximately 5% of patients with myasthenia gravis also have hyperthyroidism. Myasthenia gravis rarely improves after thyroid treatment and the relationship between the two entities is not well understood.

In Graves' disease, ophthalmopathy may cause the eyes to look enlarged because the eye muscles swell and push the eye forward. Sometimes, one or both eyes may bulge. Some have swelling of the front of the neck from an enlarged thyroid gland (a goiter).

Minor ocular (eye) signs, which may be present in any type of hyperthyroidism, are eyelid retraction ("stare"), extra-ocular muscle weakness, and lid-lag. In hyperthyroid stare (Dalrymple sign) the eyelids are retracted upward more than normal (the normal position is at the superior corneoscleral limbus, where the "white" of the eye begins at the upper border of the iris). Extra-ocular muscle weakness may present with double vision. In lid-lag (von Graefe's sign), when the patient tracks an object downward with their eyes, the eyelid fails to follow the downward moving iris, and the same type of upper globe exposure which is seen with lid retraction occurs, temporarily. These signs disappear with treatment of the hyperthyroidism.

Neither of these ocular signs should be confused with exophthalmos (protrusion of the eyeball), which occurs specifically and uniquely in hyperthyroidism caused by Graves' disease (note that not all exophthalmos is caused by Graves' disease, but when present with hyperthyroidism is diagnostic of Graves' disease). This forward protrusion of the eyes is due to immune-mediated inflammation in the retro-orbital (eye socket) fat. Exophthalmos, when present, may exacerbate hyperthyroid lid-lag and stare.

Diagnosis[]

Measuring the level of thyroid-stimulating hormone (TSH), produced by the pituitary gland (which in turn is also regulated by the hypothalamus's TSH Releasing Hormone) in the blood is typically the initial test for suspected hyperthyroidism. A low TSH level typically indicates that the pituitary gland is being inhibited or "instructed" by the brain to cut back on stimulating the thyroid gland, having sensed increased levels of T4 and/or T3 in the blood. In rare circumstances, a low TSH indicates primary failure of the pituitary, or temporary inhibition of the pituitary due to another illness (euthyroid sick syndrome) and so checking the T4 and T3 is still clinically useful.

Measuring specific antibodies, such as anti-TSH-receptor antibodies in Graves' disease, or anti-thyroid-peroxidase in Hashimoto's thyroiditis — a common cause ofhypothyroidism — may also contribute to the diagnosis.

The diagnosis of hyperthyroidism is confirmed by blood tests that show a decreased thyroid-stimulating hormone (TSH) level and elevated T4 and T3 levels. TSH is a hormone made by the pituitary gland in the brain that tells the thyroid gland how much hormone to make. When there is too much thyroid hormone, the TSH will be low. A radioactive iodine uptake test and thyroid scan together characterizes or enables radiologists and doctors to determine the cause of hyperthyroidism. The uptake test uses radioactive iodine injected or taken orally on an empty stomach to measure the amount of iodine absorbed by the thyroid gland. Persons with hyperthyroidism absorb much more iodine than healthy persons which includes the radioactive iodine which is easy to measure. A thyroid scan producing images is typically conducted in connection with the uptake test to allow visual examination of the over-functioning gland.

Thyroid scintigraphy is a useful test to characterize (distinguish between causes of) hyperthyroidism, and this entity from thyroiditis. This test procedure typically involves two tests performed in connection with each other: an iodine uptake test and a scan (imaging) with a gamma camera. The uptake test involves administering a dose of radioactive iodine (radioiodine), traditionally iodine-131 (131I), and more recently iodine-123 (123I). Iodine-123 may be the preferred radionuclide in some clinics due to its more favourable radiationdosimetry (i.e. less radiation dose to the patient per unit administered radioactivity) and a gamma photon energy more amenable to imaging with the gamma camera. For the imaging scan, I-123 is considered an almost ideal isotope of iodine for imaging thyroid tissue and thyroid cancer metastasis.

Typical administration involves a pill or liquid containing sodium iodide (NaI) taken orally, which contains a small amount of iodine-131, amounting to perhaps less than a grain of salt. A 2-hour fast of no food prior to and for 1 hour after ingesting the pill is required. This low dose of radioiodine is typically tolerated by individuals otherwise allergic to iodine (such as those unable to tolerate contrast mediums containing larger doses of iodine such as used in CT scan, intravenous pyelogram (IVP), and similar imaging diagnostic procedures). Excess radioiodine that does not get absorbed into the thyroid gland is eliminated by the body in urine. Some patients may experience a slight allergic reaction to the diagnostic radioiodine, and may be given an antihistamine.

The patient returns 24 hours later to have the level of radioiodine "uptake" (absorbed by the thyroid gland) measured by a device with a metal bar placed against the neck, which measures the radioactivity emitting from the thyroid. This test takes about 4 minutes while the uptake % is accumulated (calculated) by the machine software. A scan is also performed, wherein images (typically a center, left and right angle) are taken of the contrasted thyroid gland with a gamma camera; a radiologist will read and prepare a report indicating the uptake % and comments after examining the images. Hyperthyroid patients will typically "take up" higher than normal levels of radioiodine. Normal ranges for RAI uptake are from 10-30%.

In addition to testing the TSH levels, many doctors test for T3, Free T3, T4, and/or Free T4 for more detailed results. Typical adult limits for these hormones are: TSH (units): 0.45 - 4.50 uIU/mL; T4 Free/Direct (nanograms): 0.82 - 1.77 ng/dl; and T3 (nanograms): 71 - 180 ng/dl. Persons with hyperthyroidism can easily exhibit levels many times these upper limits for T4 and/or T3. See a complete table of normal range limits for thyroid function at the thyroid gland article.

In hyperthyroidism CK-MB (Creatine kinase) is usually elevated

Treatment []

Antithyroid drugs,Beta-blockers

,Diet,Radioiodine,Thyroid storm

Advertisement